SF298 MASTER COPY _ aiad KEEP THIS COPY FOR REPRODUCTION PURPOSES

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average ! hour per response, including the time for reviewing instructions, searching existing data sources,
gathenngand m ining the data needed, and compieting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jetterson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and 8udget, Paperwark Reduction Project (0704-0138). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Reprint

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Title shown on Reprint

Aeo miPR /59

P ——————
6. AUTHOR(S)

Author(s) listed on Reprint

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

prodtuy LA 43243

10. SPONSORING / MONITORING

R T T i ST U A P T =T S Ty
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REPORT NUMBER

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

Ako 30989 21-mA

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

ABSTRACT ON REPRINT

DIIC QUALITY TNeomReTED 2
e SR+ L N o

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18 N
298-102

' Presenters: David A. Dampier, Ronald B. Byrnes, Mark R. Kindl, Luqi

Title: Rapid Prototyping Of Army Embedded Software Systems
Track: - Software Engineering Environments
Day: Tuesday, 11 April 1995

.ge ords: Rapid Prototyping, Software Development, Embedded Systems, Army
oftware ' |

Rapid Prototyping of Army Embedded

Software Systems

IDavid A. Dampier

i BB4Sdamp.ppt

I Abstract 1

The Software Technology Branch of the Army Research Laboratory has
established a testbed to evaluate the usefulness of rapid prototyping technology
for developing embedded real_time software for Army systems. It is still early to
make conclusions, but preliminary efforts look promising.. Current efforts and
future proposed efforts are outlined in this presentation.

Keywords: Rapid Prototyping, Software Development, Embedded Systems,
Army Software

Computer-aided rapid prototyping is a software evolution methodology that allows the
rapid development of software prototypes with the goal of achieving a validated set of
requirements more quickly than under current practice. In more traditional methods of software
development, requirements engineering is accomplished by a skilled software engineer after
receiving the customer's initial vision for the system. Generally, the customer does not
understand enough about the software requirements, and the engineer doesn't understand enough
about the customer's problem. The results are incomplete or inaccurate requirements which may
lead to software that doesn't completely satisfy the need. Alternatively, periodic design reviews
may reveal the problem, but subsequent design changes may result in schedule or cost overruns.
Embedded software systems are even more susceptible to these problems, as their functionality is
usually hidden behind hardware interfaces. Failure of embedded systems due to software design
flaws is generally more serious, as their failure is more likely to result in loss of life, limb, or

‘Seventh Annual Software Technology Conference, 9-14 April 1995 Salt Lake City, Utah

19960912 091

. ¢
4

January 28, 1995

valuable property.

Computer-aided rapid prototyping provides a method through which the customer and the
designer collaborate throughout the design process; thus, the problems associated with
requirements analysis are addressed. As shown in Figure 1, an initial set of requirements is
provided to the prototype designer who develops an initial prototype. This initial prototype is
then demonstrated to the customer for evaluation and feedback. Deficiencies noted by the
customer are used by the designer to adjust the requirements and redesign the prototype. The
prototype is then redemonstrated to the customer for additional feedback. This iterative process
continues until the customer is satisfied with the performance of the prototype and a validated set
of requirements is produced. The Ada code generated for the final prototype, including atomic
objects created or retrieved from a software base, may then be used as the basis for building the
production system. In military software development organizations, this technology can be used
by software engineers to quickly produce a set of requirements that satisfies the customer's needs.
The resultant system can then be completed by the organization or the prototype and validated
requirements can be turned over to a contractor. Either option will provide for more rapid
completion of military software with enhanced assurance that the system will accurately satisfy
the military requirement.

Although this technology may be used for information systems, the real power is realized
in the development of real-time embedded systems. Example software systems that could benefit
from this technology include flight control software for aircraft, missiles, and autonomous
aviation vehicles, command and control systems, robot control software, and radar monitoring
software.

January 28, 1995

initial
goals

requirements

noted deficiencies

new

goals
performance

validated requirements

modularization + objects

operational system

Figure 1: Computer-Aided Rapid Prototyping Paradigm [4]

According to [8], prototyping has three main benefits: it improves communication,
reduces risk, and is the most feasible way to validate specifications. Communication is improved
through demonstration of the prototype to the customer, thus enabling more effective
collaboration between the customer and the user and helping expose unstated assumptions from
both the customer's and the designer's point of view. Prototyping reduces risk by uncovering the
proposed design's unknown properties and providing a basis from which to evaluate alternative
designs. Since customer and designer are collaborating on the development of the prototype, it is
more likely they will interpret the specification in the same way. This in turn serves to validate
the specification during development.

January 28, 1995

At the Software Technology Branch of the Army Research Laboratory, we have
established a rapid prototyping laboratory to evaluate the usefulness of this technology for
developing embedded real-time software for Army weapons systems. The laboratory consists of a
SPARC machine hosting the prototyping system along with all required supporting software
connected to our network. Additionally, three other SPARC machines are configured to run the
software through the network.

One of our goals is to obtain requirements for Army embedded systems such as flight
control software for Army aircraft or missiles, autonomous vehicle control software, or command
and control systems. These requirements will be used to develop software prototypes to show
that rapid prototyping technology can be used to satisfy Army software requirements for
embedded real-time software. Once the Army software community is convinced that the
technology is capable to meet their needs, the system can be released to Army (and DoD)
software developers for use on current systems under development.

An additional, recently proposed goal includes modelling the software development
process over a common system evolution record [10]. Using our prototyping laboratory, we will
model each part of the software development process and automate each process where possible.
A common data structure for tracking all information about a software system from initial goals
identification to system retirement will also be modelled using the system. This data structure
will be similar to that proposed by Salasin in [10].

The Computer-Aided Prototyping System (CAPS) [7], developed at the Naval
Postgraduate School, will be the prototyping environment used to test this technology. CAPS has
been used to develop numerous software prototypes including missile system simulators,
command and control systems, robot control software, and automated monitoring software [6, 9].
CAPS, as depicted in Figure 2, provides the capability for the designer to design a prototype in a
high level specification language, the Prototype System Description Language (PSDL) [6]. PSDL
prototypes are executable specifications consisting of sets of operators and abstract data types.
Each element of the prototype, whether operator or abstract data type, has a PSDL specification

January 28, 1995

and an implementation written either in PSDL for composite implementations or Ada for atomic
implementations. PSDL implementations are enhanced data flow diagrams containing operators
and data streams along with control and timing constraints to specify control flow and real-time
requirements. In addition, CAPS contains a number of tools to assist the prototype designer.
These tools are grouped according to functionality into four basic groups: Editors, Execution
Support tools, Project Control tools, and a Software Database.

uolnoaxs

software
base

Figure 2: Computer-Aided Prototyping System.

3.1 Editors

There are three editors used in the CAPS system: a PSDL Editor consisting of both a
syntax-directed editor and a graphic editor; a syntax-directed editor for editing Ada code; and an
interface editor for building graphical user interfaces. The PSDL editors are linked so that
changes made in one are automatically reflected in the other. This allows the software designer
to build a prototype outside the CAPS environment and subsequently use it as input to the
system.

January 28, 1995

3.2 Execution Support Tools

The execution support tools in the CAPS environment consist of an expander, a
translator, and a scheduler. The expander is used to expand the top level PSDL implementation
for the prototype by replacing each of the operators with PSDL implementations by their
subgraphs. It also moves all of the control constraint definitions to the top level graph. The
translator generates an Ada package containing instantiations of the data streams and driver
procedures for each of the atomic operators. The scheduler attempts to find a static schedule for
all of the time-critical operators. If a feasible schedule is found, then the scheduler produces an
Ada task that calls each of the driver procedures for the time-critical operators. Once the static
schedule is completed, a dynamic schedule task is generated for all of the non-time-critical
operators. The dynamic schedule invokes the non-time critical operators when the processor is
not engaged in executing a time-critical operator. '

3.3 Project Control Tools

The project control tools consist of an evolution control system and a change-merge tool.
The evolution control system manages the configuration control of the prototype and schedules
design tasks within the design team [1]. The change-merge tool is used to combine
independently developed variations of a prototype when different design tasks have been
assigned to different designers [2,3,4,5].

Building a prototype in CAPS is accomplished as follows. First, the designer draws the
graphic implementation of the prototype using the graphic editor. The graphic editor then
automatically provides the skeleton PSDL code for the prototype and propagates any inherited
timing and control constraints. Using the syntax directed editor, the designer modifies the
skeleton code created by the graphic editor to complete the PSDL description of the prototype.
Next, the translator is used to produce an Ada package for instantiating the data streams, reading
from and writing to the data streams, and executing the atomic operators. The translator
generates driver procedures for each of the atomic operators that provide standard interfaces
between the atomic components Ada implementation and the generated schedules. Following
this, the static scheduler attempts to create a schedule for all of the time-critical operators. If a
feasible schedule is found, a schedule is produced in the form of an Ada task that calls each of
the driver procedures for the time-critical operators. Finally, the prototype is compiled, loaded,
and executed for the user. .

January 28, 1995

3.4 Software Base

During the development of the prototype, the atomic level operators are implemented in a
high-level programming language (Ada for military systems). The atomic operator
implementations can either be written by the design team or retrieved from a reusable software
repository called the software base. This repository contains reusable software components
written in a high-level programming language, along with their PSDL specifications. A
specification is used during the retrieval process to identify a component and its capabilities. To
retrieve one of these reusable components, the designer specifies the desired functionality desired
using axioms. The software base is then searched for a component that best matches that
functionality. In some cases, there may be more than one component found that provides the
desired functionality. In that case, all candidate components would be provided to the designer
for consideration.

The following sections show two examples of real-time embedded prototypes developed
using the CAPS software. Although these examples were not built to precise military system
requirements, they do demonstrate the possibilities available for developing this type of software.
In the example graphs, the bubbles or vertices are operators and the edges are data streams. Some
of the operators have MAXIMUM EXECUTION TIMES shown in the graph above the bubble.
This is a timing constraint that tells the scheduler that the operator will complete execution
within the time shown. Each of the operators in the graph can be implemented in a high-level
programming language like Ada or PSDL. If the operator is further decomposed into a PSDL
implementation, the implementation would also take the form of a graph.

4.1 Patriot Missile Control System

January 28, 1995

scud_position

radar_mode 200ms track_id

patriot

missile Jtrack

tactical_status scud_position

scud_status

control_
patriot

Figure 3: Prototype for a Patriot Simulator.

The Patriot prototype shown in Figure 3 was developed shortly after the Gulf War by an
instructor and students at the Naval Postgraduate School. It contains a simulated SCUD missile
and a Patriot interceptor. The prototype demonstrates the ability of the CAPS software to
generate code for an autonomous patriot system. Using a process of iterative refinement, this
prototype took two weeks to construct. To execute the prototype, two inputs are necessary: the
distance of the SCUD launcher from the friendly border and the distance from the SCUD
launcher to the target. If the target is in friendly territory, the Patriot missile will intercept the
SCUD before it detonates on target. If the target is in enemy territory, the Patriot system will
track the SCUD but will not intercept it.

January 28, 1995

d_course

170 ms

simulation_status

check_
position

track_error

position

waypoints

d_speed

d_pos d_ait
65 ms
I
control_ radalt
urfaces
altitude_, speed
course command correction
command
75 ms
profile
correct altitude
altitude
a_profile

correct

course c_profilé

Figure 4: Prototype for a Tomahawk Missile Simulator.

4.2 Tomahawk Missile Simulator

The prototype shown in Figure 4 is a Tomahawk Missile Simulator. This prototype was

constructed by Lieutenant Jim Brockett, U.S. Navy, a Ph.D. Candidate at the Naval Postgraduate
School. This prototype simulates a Tomahawk Cruise Missile being fired from a Navy ship and
following a predetermined cruise path. The coordinates of checkpoints along the path are input
by the user. Once launched, the missile follows the flight path and explodes on target. This
prototype demonstrates the ability of CAPS to generate guidance control software.

16

January 28, 1995

We have introduced the rapid prototyping effort being undertaken at the Software
Technology Branch of the Army Research Laboratory together with the capabilities of the CAPS
software. It is our purpose to generate interest in our project and to solicit from interested
agencies real-world requirements for embedded real-time software. This will provide us an
opportunity to further demonstrate the usefulness of this system to Army customers.

1. Badr, S., A Model And Algorithm For An Evolution Control System, Ph.D. Dissertation,
U.S. Naval Postgraduate School, Monterey, CA, December 1993.

2. Dampier, D., A Model for Merging Different Versions of a PSDL Program, Master's
Thesis, U.S. Naval Postgraduate School, Monterey, CA, June 1990.

3. Dampier, D., Lugqi, Berzins, V., "Automated Merging of Software Prototypes", Journal Of
Systems Integration, Kluwer Academic Publishers, March 1994,

4. Dampier, D., A Formal Method for Semantics-Based Change-Merging of Software
Prototypes, Ph.D. Dissertation, U.S. Naval Postgraduate School, Monterey, CA, June 1994.

5. Dampier, D., Byrnes, R., and Kindl, M., "Computer-Aided Maintenance for Embedded
Real-Time Software", Proceedings of the 19th Army Science Conference, Orlando, FL, June
1994.

January 28, 1995

6. Lugi, Berzins, V. and Yeh, R., "A Prototyping Language for Real-Time Software", IEEE
Transactions on Software Engineering, October 1988, pp. 1409-1423.

7. Lugi, "Software Evolution Through Rapid Prototyping", IEEE Computer, May 1989.

8. Lugi and Royce, W., "Status Report: Computer-Aided Prototyping", IEEE Software,
November 1991, pp. 77-81.

9. Lugi, "Computer-Aided Prototyping for a Command and Control System using CAPS",
IEEE Software, January 1992, pp. 56-67.

10. Salasin, J., "The System Evolution Record", Proceedings of the First Reengineering
Workshop, Santa Barbara I, 21 - 25 September 1992, pp. 4-8 - 4-17.

DAVID A. DAMPIER, Ph.D.

CPT David A. Dampier is a Systems Automation Engineer with the Software Technology
Branch, Computational Sciences and Technology Division, Advanced Computational and
Information Sciences Directorate, Army Research Laboratory located at the Georgia Institute of
Technology in Atlanta, Georgia. His research interests are in software engineering, software
prototyping, software evolution, and formal methods for configuration control and
change-merging.

CPT Dampier's previous assignments include Missile Maintenance Company Commander and
Division Repair Parts Accountable Officer with the 24th Infantry Division, and
Communications-Electronic Materiel Management Officer with the 2d Infantry Division.

CPT Dampier was awarded his B.S. in Mathematics from the University of Texas at El Paso in
1984, and his M.S. and Ph.D. degrees in Computer Science from the Naval Postgraduate School
in 1990 and 1994 respectively.

